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ABSTRACT

In this paper, I develop the argument that organizations avert technological obsolescence through the accumulation of incremental change.  Incremental change is not associated with radical change as resistance to change within organizations makes it conform to existing practices.  Inbound mobility, the recruitment of scientists, is one form of incremental change that occurs continually in biotechnology firms.  I propose and show, using data on mobility events occurring over 38 years in the U.S. and Canadian Biotechnology industry, that mobility lowers resistance to change rather than result in conformity, and that it leads to the creation of innovations that makes greater impact on an organization’s technological community.  Further, older organizations that are more resistant to technological change benefit more from inbound mobility, supporting the thesis that it helps to avert obsolescence.  Analysis reveals that organizations may effectuate major changes to their core technological capabilities through the accumulation of incremental recruiting events. 
INBOUND MOBILITY, INERTIA, AND OBSOLESCENCE

The need to understand change processes is particularly relevant now when dramatic alternations are underway in the economic, technological, and social features of our environment, and people in organizations are struggling to keep pace.  Since organizations become less responsive to changes in their environment as they age, more market opportunities are missed and fewer pitfalls and dangers in the market are avoided.   A consequence of this is that the impact an organization’s innovation has on its technological community decreases as it ages due to obsolescence Sorensen & Stuart, 2000()
.  This begs the question as to how organizations make major changes to their capabilities to remain competitive and to avert obsolescence?
The proposition of this paper is that an organization may achieve radical change to its capabilities through accumulated incremental change (Brown & Eisenhardt, 1997).  Available data is seldom sufficiently detailed to make the bridge between small changes in an organization and macroscopically observable changes in organizational capabilities.  The introduction of new employees to an organization results in a change to the organizational genotype – the domain specific technological knowledge present in a firm.  This change in the knowledge base, I show, decreases resistance to technological change as organizations engage in more technological combination and build less upon their prior innovations and are path dependent.  Learning by doing (Argote & Epple, 1990) in new areas of innovation reinforces shifts in the knowledge of a firm  that result from mobility.   While each such change is relatively small when considered in isolation, their accumulated effect over time is to result in a major change to an organization's domains of activity and to its capabilities.   
To investigate the proposition that incremental change may result over time in radical change to an organizations capabilities, I model organizational capabilities as a vector of skills in different technologies.  In this representation, core technologies are those in which a firm possesses the greatest domain specific skill, and non-core technologies are those in which expertise is lower.  For instance, the employees of a number of biotechnology firms are experts in the use of Recombinant DNA and Gene Splicing and may have substantially less expertise in other technologies such as Stem Cell Research.  For these firms, Recombinant DNA and Gene Splicing are core technologies.  Given this, I identify a radical change to an organization as the entry of a new technological domain such as Stem Cell Research to the set of technologies that are a part of its technological core to the organization. 
Resistance to Change and Obsolescence

A number of theories of organizations indicate that since organizations resist change and are inert, that incremental change will not be effective to make major transformations and to avert obsolescence.  For one, a number of industry histories and case studies of technological trajectories and industry evolution indicate that radical organizational transformation occurs over brief periods which are interspersed by long periods of incremental change in an industry 
 ADDIN EN.CITE 
(Abernathy & Utterback, 1978; Tushman & Anderson, 1986)
.  In this model, even though incremental change occurs to an established product architecture Anderson & Tushman, 1990()
, it is not associated with or responsible for radical organizational transformation.  Incremental change does not result in radical transformation as the deep structure within an organization, such as its knowledge base, is highly stable and resists change Gersick, 1991()
.  While this deep structure rules many options out for an organization, it also rules mutually contingent options in.  As a result, initial choices are tenacious and initial decisions have a tendency to be reinforced 
 ADDIN EN.CITE 
(Eisenhardt & Schoonhoven, 1990; Gersick, 1988; Stinchcombe, 1965)
.  Given change in the environment, this implies that organizational capabilities can become obsolete.  In this view, incremental changes such as the influx of new organizational members would reinforce initial choices and deep structure rather than dismantle it, and it is only in brief revolutionary periods that an organization’s deep structure may be replaced with a new one.  

Behavioral and evolutionary theories Cyert & March, 1963(; Nelson & Winter, 1982)
 also inform us that since change occurs as the product of local searches in the neighborhood of an organization’s existing routines Stuart & Podolny, 1996()
, organizations that adapt through incremental changes are likely to select individuals for “fit” with the organization.  That is, incremental change is likely to be competency building and self-reinforcing.  Since routines in organizations are resistant to change, incremental change will lead to rigidity and to competency traps 
 ADDIN EN.CITE 
(Levinthal & March, 1993; March, 1991)
.  Thus, even though hiring may bring new skills to an organization, this may not lead to a change in the core set of organizational capabilities if the organization is slow to assimilate new knowledge and new hires are rapidly socialized to organizational practices.  

Organizational learning theories also indicate that the capabilities that organizations accumulate in a set of domains of activities will lead to rigidity to change.  Since capabilities acquired by learning by doing will result in greater performance in domains of expertise Argote & Epple, 1990(; Levitt & March, 1988)
, they will lead to a loss of the ability to assimilate new information of other domains Cohen & Levinthal, 1990()
.  The presence of detailed knowledge of a new technological domain is required to appreciate the significance of the domain.    Even if a firm recognizes the significance of a new technology, expertise is required to exploit it and create new innovations.  The absence of these technological competencies in emerging technologies will limit the ability of organizations to make major changes to their technology regimes Abernathy & Utterback, 1978(; Tushman & Anderson, 1986)
.  In this vein, in a study of product development in the robotics industry, Katila and Ahuja 2002()
 found that greater knowledge depth, the prior experience of a firm, led to routine and made search more reliable Levinthal & March, 1981()
, but was also a source of rigidity 
 ADDIN EN.CITE 
(Argyris & Schon, 1978; Dosi, 1988; Leonard-Barton, 1992)
. Consistent with these arguments, Sorensen and Stuart observed a paradox: that even though the rate of innovation increases with age, organizations find it difficult to keep pace with incessant external developments and innovative outputs become obsolete Sorensen & Stuart, 2000()
.   
The ecological view 
 ADDIN EN.CITE 
(Hannan & Freeman, 1977, 1984)
 also does not predict that radical change can occur through the accumulated effect of inbound mobility, but is not inconsistent with it.    The core technologies, structures, and processes of organizations, according to Stinchcombe 1965()
, result from the early prevailing practices and decisions of an organization’s founders.  Inertia in organizations renders the core technologies of older organizations obsolete following environmental change 
 ADDIN EN.CITE 
(Aldrich & Auster, 1986; Barron, West, & Hannan, 1994; Ranger-Moore, 1997)
.  If organizations engage in major structural change to counter obsolescence, such as through large scale recruitment, this will disrupt routine and lower the reliability of performance, undermining survival chances.  Further, a sufficient period of time is required following structural change to repair the problems associated with disruption Amburgey, Kelly, & Barnett, 1993()
.    Incremental changes in organizations, on the other hand, in particular peripheral changes that do not effect an organizations technological core, may prove beneficial for performance Hannan & Freeman, 1984()
.   

Finally, while research on mobility has dedicated considerable attention to knowledge flows between organizations, whether mobility results in radical changes to capabilities has been subject to little investigation.  This research stream shows that mobility leads to a change in the organizational genotype as organizations “learn by hiring” through the acquisition of knowledge from other firms.   For one, Rosenkopf and Almeida 2003()
 show that hiring is an effective mechanism by which firms make a bridge to distant contexts and acquire knowledge.  Similarly,  Song, Almeida, and Wu 
 ADDIN EN.CITE 
(2003)
 demonstrate that mobility will result in learning by hiring when the hiring firm is less path dependent and when hired engineers possess technological expertise distant to that of the hiring firm.  Singh and Agrawal 2011()
 show that learning by hiring has some limits.   They find that while hiring firms do learn by hiring as they increase their use of new recruit’s prior inventions, that this increased usage is limited to a new hires immediate collaborative network.  Tzabbar 2009()
 makes a link between mobility and technological repositioning in organizations.  In a study of the U.S. biotechnology industry, he finds that technological repositioning occurs when hired scientists possess distant skills sets and when innovation in the hiring firm does not depend on a few star scientists. 
The arguments presented above converge as they all suggest that organizations will become increasingly resistant to change as they age and as they gain experience, and if there are changes in the environment such as changes in the dominant technologies used in innovation, then an organization’s capabilities may become obsolete Barron et al., 1994()
.  Technological obsolescence thus builds upon two assumptions: that the technologies organizations use become less impactful and irrelevant over time, and that organizations become resistant to change as they age.  In figure 1, I illustrate that technologies become less impactful over time using United States Patent and Trademark (USPTO) data for the US and Canadian Biotechnology industry.  The figure plots the influence of a 4-digit USPTO technology as a ratio of the average number of citations received by patents that use the technology in a given year to the average number of citations received by all biotechnology patents in the same calendar year.  The figure illustrates how the relative impact of a given technology used in biotechnology (compared to the average impact of all technologies used) varies with time.  For three highly used technologies in biotechnology, the plot shows that there exists a dominant trend for the technologies to become less influential over time.  For instance, whereas patents related to “proteins with more than 100 amino acid residues” received more than twice as many cites as the average biotechnology patent in the years prior to 1983, by the year 2000 this ratio had fallen below one half.
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While technologies become less influential over time, firms become increasingly resistant to technological change as they age Sorensen & Stuart, 2000()
.  Firms that resist change are likely to remain within their technological niches, build more upon prior organizational knowledge, and self-cite their own patents Podolny & Stuart, 1995()
.   Similarly, firms that are resistant to technological change will develop fewer new combinations of technologies in innovation Fleming, Ming, & Chen, 2007()
.   Figure 2 plots the average proportion of self-citations (to all cites on a patent) and the average extent of technological combination, defined as the number of new combinations of technologies that occur in patenting (divided by the total number of combinations possible) over a period of thirty years across a sample of over 600 biotechnology firms.  The figure indicates that a trend exists for firms to become entrenched in their ways of doing things as they create fewer technological combinations (figure 2a) and build more upon their prior knowledge and are path dependent (figure 2b).  

-----------------------------------------------

INSERT FIGURE 2 ABOUT HERE

-----------------------------------------------

The dual trend of technologies towards lower impact over time and of organizations towards greater resistance to technological change as they age leads to the phenomena of technological obsolescence with age as older organizations become stuck with less influential technologies.   For innovation to remain influential in the face of creeping obsolescence, organizations need to adapt to their environment by introducing change in the set of core technologies that they use.  The accumulation of incremental changes, such as change resulting from the influx of new organizational members, I propose, is one mechanism that helps to break the relationship between resistance to technological change and firm age, and thus to helps organizations to avert obsolescence.  
INBOUND MOBILITY AND CHANGE
Since a trend exists for technologies to become less impactful over time and for organizations to become more resistant to change as they age, the question arises as to how organizations change and avert obsolescence?   The accumulation of incremental changes over time, I propose, can result in the creation of new organizational capabilities and help an organization to avert obsolescence.  While punctuated change certainly occurs in many industries such as airlines, cement manufacture, and minicomputer manufacture Tushman & Anderson, 1986()
, in at least some cases radical transformations that are identified as punctuated change may be the result of the accumulation of incremental changes in organizations.  Available data are seldom sufficiently detailed or sufficiently micro to make the bridge between small changes in organizations such as those resulting from hiring, and macroscopically observable changes in organizational capabilities.  If this is the case, the question arises as to how organizations break free from inertia and rigidity of their deep structure Gersick, 1991()
, routines Cyert & March, 1963(; Nelson & Winter, 1982)
, and capabilities Argyris & Schon, 1978(; Leonard-Barton, 1992)
 to effectuate change?

Resistance to change.  Consistent with the observation that organizations learn by hiring 
 ADDIN EN.CITE 
(Rosenkopf & Almeida, 2003; Song et al., 2003; Wezel, Cattani, & Pennings, 2006)
, the introduction of new hires in a firm results in a change to the  organizational genotype – the knowledge base of an organization.  March describes this genotype or organizational “code” as a vector of skills in different technological domains March, 1991()
.  For instance, a subset of the technologies used in biotechnology may be represented as a vector as <Bioinformatics, Recombinant DNA, Gene Splicing, Cloning>.    New hires bring different levels of skills in each of these technologies.  If a firm has a significant capability in bioinformatics and it hires a scientist with skills in cloning, then hiring results in an increase in the diversity of skills present in the organization and leads to a change in the knowledge base of the firm.  Each individual that is hired into an organization in this manner results in a small change to the organizations technological core Hannan & Freeman, 1984: 156()
, deep structure Gersick, 1991()
, or organizational code March, 1991()
.

Since hiring results in a change to a firms knowledge base, it alters the production possibility set and the type of innovation that can be produced Nelson & Winter, 1982()
.  The likelihood increases that innovation takes place using technologies in which new hires possess expertise.   Thus, firms have a greater propensity to combine the use of technologies where they possess strong capability with those technologies with which new hires are experts.  In a similar vein, if firms use technologies where new hires are experts, the likelihood that they build upon their prior technological niches in innovation decreases.  Consistent with these arguments, Tzabbar found that the recruitment of scientists with skills that are distant from those of the hiring firm results in technological repositioning, the creation of new patents that are dissimilar to prior ones Tzabbar, 2009()
.   Greater technological combination and less path dependence are both manifestations of lower organizational resistance to technological change.  

Inbound mobility reduces resistance to technological change through a second mechanism; it disrupts routine and coordination in innovative teams.  Routines, “multi-actor, interlocking, reciprocally triggered sequences of action” Cohen & Bacdayan, 1994: 554()
, form the basis for coordinated activity in organizations, and in innovation, when individuals work together repeatedly as an innovating team, they learn who knows what, effectively engage in the division of labor, and better coordinate their activities Reagans, Argote, & Brooks, 2005()
.  Greater routine results not only in efficiency, but also to cohesive groups and group think, viewed as sources of inertia Hannan & Freeman, 1984()
, inflexibility (Gersick & Hackman, 1990), and competency traps March, 1991()
.  

Hiring results in more disruption to an organization as the number of individuals hired increases.  Newly hired individuals need to be effectively integrated into teams and work groups, and the extent to which work needs to be redistributed among members of the enlarged group increases.  Incumbent organizational members need to adjust their work habits to accommodate for the new arrivals.  Given this, not only does the cohesiveness of work groups decrease following hiring, the tendency of team members to indulge in groupthink also diminishes.  As a result, an innovating group of scientists is less resistant to experiment with new combinations of technologies and more likely to extend organizational activity into new technological niches, that is, path dependence decreases.     Thus, by introducing new technological knowledge and by disrupting routine, inbound mobility leads to lower resistance to technological change.
Hypothesis 1a (H1a). Inbound mobility will increase the extent of technological combination in organizations.

Hypothesis 1b (H1b).  Inbound mobility will decrease the extent to which an organization builds upon its prior innovations and is path dependent.

Innovation impact.  The influence of a firm’s innovative activities on its technological community is an indication of its fit with the environment Sorensen & Stuart, 2000: 88()
.  If technologies become less influential over time and organizations using these technologies become more resistant to change as they age, then over time these same organizations will make a smaller impact on their technological community and have a lower fit with the environment, a sign of obsolescence.  If inbound mobility reduces the resistance of organizations to technological change and enables organizations to adapt to their environment, there will be less of a mismatch between an organization’s capabilities and the requirements of the environment.  The forward citations received by a patent provide an indication of the extent to which an organization has contributed to its technological community and to the development of subsequent innovations.  Thus, if inbound mobility results in less resistance to technological change, it will also increase the fit of an organization to its environment and lead to more highly cited and impactful innovations.  
Hypothesis 2a (H2a). Through an increase in technological combinations, inbound mobility leads to the creation of more impactful innovations.

Hypothesis 2b (H2b).  Through a decrease in path dependence, inbound mobility leads to the creation of more impactful innovations.  
Reducing obsolescence.  Older organizations are particularly susceptible to imprinting and to a liability of obsolescence Ranger-Moore, 1997()
 as core technologies, structures, and processes mirror early decisions and prevailing practices at the time of a firm’s founding team Stinchcombe, 1965()
.  Given inertia, these practices will persist as organizations age Hannan & Freeman, 1984()
.  Similarly, older firms are subject to stronger inertial pressures from core organizational routines which interfere with their ability to adjust to a changing environment as they age Nelson & Winter, 1982()
.  Older organizations also have a lower propensity to change as they age due to rigidities resulting from the existing portfolio of capabilities and knowledge Cohen & Levinthal, 1990(; Levitt & March, 1988)
 which by increasing the likelihood of innovation in areas of expertise, also decrease the likelihood of firm innovation in new technological domains.  

If inbound mobility reduces resistance to technological change in organizations and through this effect increases the fit of firm innovation activities with the environment, it should in particular enhance the fit of older organizations that are more inert and more resistant to change. Older organizations do not suffer from a lack of reliability and accountability of organizational activities Hannan & Freeman, 1984()
, rather their challenge is to continually actualize their portfolio of activities to maintain a fit with the environment.  Younger and less inert firms, on the other hand, have a significantly lower likelihood of working in obsolete domains and with obsolete technologies due to their more recent founding.  The primary challenge to these firms is to increase the reliability and accountability of their activities, not to counter inertial pressures and obsolescence.  Consequently, inbound mobility should be particularly effective in increasing the impact of innovations of older organizations that are characterized to a greater extent by inertia and resistance to technological change as compared to younger organizations.  Since the extent of technological combination and path dependence both reflect the effect of resistance to change, inbound mobility will result in more technological combination and in less path dependence in older firms that face inertial pressures and are threatened by obsolescence than in younger firms.  This leads to the next set of hypotheses.  
Hypothesis 3a (H3a): By increasing technological combination more in older organizations, inbound mobility will lead to a greater increase in innovation impact in older organizations.  

Hypothesis 3b (H3b): By decreasing path dependence more in older organizations, inbound mobility will lead to a greater increase in innovation impact in older organizations.  
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The model and hypotheses 1-3 are shown graphically in figure 3.  The first stage of the model tests hypothesis 1, the effect of mobility on resistance to change, represented by technological combination and path dependence.  The second stage of the model tests for hypothesis 2, the mediated impact of mobility on the level of fit a firm has with its environment.  Fit is measured as the impact firm innovation has on the firm’s technological community.  Finally, hypothesis 3 is tested by introducing an interaction term in the first stage of the model.  

Radical change.  Figure 3 depicts the focal argument of this paper that the inbound mobility of individuals is an example of an incremental change to organizations that results in less resistance to technological change (H1) and to the creation of innovations that have a greater impact on the technological community (H2).  These changes to the organization do not result in an abrupt reorientation of organizational activities from one domain of activity to another; neither do they lead to a radical change to organizational knowledge and routine.  The accumulated effect of inbound mobility accumulates over time is to help older and more inert organizations (H3) to maintain a fit with their environment and to avert obsolescence.  

Recruitment leads to the acquisition of new knowledge through two mechanisms: first new hires bring expertise in new areas with them.  This leads to a change in the organizational genotype, the technological expertise present in the firm.  Second, changes in technological expertise following mobility are accentuated by further rounds of innovation in these new areas of activity that results in the acquisition of more  new knowledge in the corresponding domains as a result of learning by doing (Argote & Epple, 1990).  For instance, if as learning by doing studies assume, each time an individual innovates using gene splicing or cloning, her expertise increases in these domains, and if knowledge in an organization is considered the sum of all individual expertise, then the acquisition of knowledge in new technological areas by individuals in an innovating team will lead to a small shift of the organizational knowledge vector.

Whether intended or random, changes to an organizations knowledge vector following inbound mobility accumulate over time.   These shifts in the expertise possessed by a firm may be the result of intention – for instance managers wish to develop new capability sets and the hiring of a new CEO may result in radical change Virany, Tushman, & Romanelli, 1992()
.  These shifts in the knowledge vector may also be due random chance as an organization just “happens” to acquire capabilities in a new domain such as gene splicing when it hires someone with strong expertise in recombinant DNA techniques.  In both cases, changes to the knowledge vector accumulate.   The aggregation of changes in this way, I propose, can make technologies that were initially peripheral to the organization become more core to its activities over time as changes accumulate.   In a similar vein, technologies that were core to the firm initially may exit the core as capabilities erode due to turnover.   In sum, organizations may affect changes to their core technological capabilities over time as a result of continually occurring inbound mobility events.  

Hypothesis 4 (H4): Inbound mobility results in change to an organizations technological core.

METHODS

The Biotechnology Industry Dataset

Biotechnology is defined as “the manipulation of living organisms or their components to produce useful usually commercial products such as pest resistant crops, new bacterial strains, and novel pharmaceuticals” Merriam-Webster, 1997()
.   In this research, by biotechnology I refer to the population of organizations engaged in the development of human therapeutic applications of biotechnology.  All other applications of biotechnology such as agricultural biotechnology, food and beverage applications, as well as applications of biotechnology in the domain of energy are not taken into consideration.

The advent of biotechnology can be traced to the pioneering efforts of Genentech to develop a treatment for diabetes.  As a startup company, Genentech used a genetic engineering technique known as recombinant DNA to synthesize the gene for human insulin and produce synthetic insulin in 1978.  From these beginnings, the industry has benefited from rapid growth and in 2006 industry revenues have surpassed $ 70 billion for the first time.  In recent years, technological developments in the areas of gene therapy, stem cell research, and cloning have reinvigorated interest in the field and in its potential as a substitute for classical pharmaceutical therapies.   

The biotechnology industry provides an excellent setting for a study of the influence of inbound mobility and change in organizations for a number of reasons.  For one, it is a knowledge intensive industry and research in drug discovery is a key firm activity.  Comprehensive records of innovation activity in the industry are available in the form of patenting records right from the inception of the industry in the 1970s to the current day.    Second, the biotechnology industry is characterized by substantial mobility of scientists between biotechnology organizations, academic institutions and other healthcare organizations Zucker & Darby, 1997()
.  The available data permits a study of mobility and of its influence in innovation.  

Following Powell et al. 2005()
, the starting point in developing the sample is BioScan, an independent industry directory, founded in 1988 and published six times a year.  From Bioscan, I extracted a list of 2,084 public and private biotechnology firms.  In addition, I drew from the Capital IQ database, which provides extensive and deep information on companies, markets and people worldwide, to generate another list of 5,359 biotechnology firms.  Finally, I obtained data on innovations in biotechnology from the United States Patent and Trademark Office (USPTO).  The USPTO database provides a documented history of innovation in different industries.  Each patent in the database contains the name of the organization, the innovating team, the technological classes used, and the contributions the patent makes to the state of art in knowledge.  In order to ensure a complete coverage of innovation in biotechnology, I downloaded patent data directly from the USPTO website up until 31st December, 2007.  

In a first step, I consolidated data across the Bioscan, Capital IQ and USPTO databases by matching firm names across the different databases.  I generated standardized firm names using an algorithm developed by Bronwyn Hall of the University of California at Berkeley.
  This algorithm standardizes endings such as Inc., Incorporated, Corp., etc., which frequently differ from one patent to another for the same firm, facilitating name matching.  Only firms with headquarters in the United States and Canada were retained in the merged list of firm names.  While matching firm names, I found that a number of biotechnology firms have changed their names since their founding, introducing significant error into the identification of a firm’s patents.  Using the Capital IQ database, I corrected for this anomaly, as this database provides a firms prior and current names.  Following Powell et al. 2005()
, I eliminated pharmaceutical firms with secondary activities in the biotechnology area from the sample.  However, dedicated biotechnology subsidiaries of these pharmaceutical firms were retained in the database as such firms have often been acquired by major pharmaceutical firms.  For instance, Genentech Inc. was acquired by Roche Holdings Inc. of which it is now a subsidiary.  All in all, the resulting dataset contains data on 25,318 innovations in 611 biotechnology firms. 

Second, in order to compute the knowledge variables used in analysis, it was necessary to identify the patents belonging to each scientist in the 611 firms under consideration.  For this, I matched scientist names within the USPTO dataset and identified the patents that each scientist had developed.  I modified the name matching method developed by Trajtenberg, Shiff, and Melamed 2006()
 and used in empirical work by Fleming et al. 2007()
.  This method matches scientist names based on whether names sound similar using a “soundex” procedure, whether scientists listed on two patents are in the same city, use the technology classes, cite the same patents, and belong to the same firm.  To reduce the number of false matches, I introduced an additional step to this procedure- that two scientists can be matched only if their names differ from each other by one character only.  Since mobility implies that biotechnology scientists may have worked in non-biotechnology firms before or after working in biotechnology, innovation histories of scientists take into consideration mobility.  The final biotechnology dataset has 611 firms and 20,886 distinct scientists within these firms with at least one patent in biotechnology.  These scientists have worked on a total of 25,318 patents in biotechnology, and on 141,710 patents when non-biotechnology patents are also taken into consideration.  

Measures
Constructs used for empirical analysis may be divided into three distinct categories.  First, there are three different measures which serve as dependent variables in equations comprising the structural model (figure 3).  In addition, there are four inbound mobility measures and a number of control variables.

Dependent Variables
Technological combination.  This is used as a measure of resistance of a firm to experiment with new combinations of technologies Fleming et al., 2007()
.  Firms that are inert and resist technological change will have a lower propensity to experiment with new combinations of technologies and will score low on this construct.  Fleming et al. 2007()
 use first occurrences of combinations of USPTO technological subclasses listed on a patent as a measure of new combinations of technologies and of combinative creativity.  Building upon their work, I stepped through all technology class assignments starting from the first patent in 1790 to 2007 and identified the first appearance of previously uncombined pairs of subclasses.  Since the number of such new combinations possible increases with the number of unique technology subclasses that are used in an innovation,  I scaled the number of new combinations that appear on a patent by the number of possible new combinations using the technology classes listed on a patent.  If a patent uses t different technology subclasses and t is greater than one, then the maximum number of possible technology subclass combinations is t*(t-1)/2.  Technological combination is defined as the number of new combinations of subclasses in a patent divided by the number of possible combinations of subclasses.
Path dependence.  This measure is used as a proxy of the resistance of a firm to enter into new niches and domains of activity 
 ADDIN EN.CITE 
(Podolny, Stuart, & Hannan, 1996)
.  Like technological experimentation, path dependence is defined at the individual patent level as the extent to which a patent developed by a firm builds upon prior firm patents.  Each patent in the USPTO database cites other patents, which are considered to represent prior art that the patent builds upon.  When these citations are made to patents belonging to the patenting firm, they are known as “self-citations”.  As the proportion of self-citations increases, an innovation builds more upon prior firm technological niches and areas of activity and is considered to be more path dependent.  Thus, path dependence is operationalized as the number of self-citations by a given patent divided by the total number of citations made by the patent.  

Innovation Impact.  The number of citations that a focal patent receives is a measure of the impact the patent has made at a given point of time.  Experts perceive highly cited patents to be the most important in a technological area, to represent community-wide perceptions of the relative importance of patented technologies Sorensen & Stuart, 2000()
, and to be more valuable Trajtenberg, 1990()
.  For each patent in the database, I counted the number of times it had been cited by other patents up to the year 2007.  This measure excludes all citations a firm made to its own prior patents.  Since patents developed earlier can be cited for a longer period of time than more recent patents, they would be expected on the average to have a greater number of citations.  To compensate for this bias, the impact of a patent is measured as the number of forward citations it has received divided by the average number of citations received by all patents in the dataset issued in the same calendar year.  
Core technological change.  A core change in organizational capabilities is considered to take place when the composition of the set of top five technologies where the organization possesses expertise changes.  The technological capability of an organization is taken to be the average skills per employee that an organization possesses in a given technology.  To compute this capability, I model knowledge at the individual level of analysis as a vector of skills in different technologies March, 1991()
 and build on the assumption that individual knowledge accumulates in different categories following learning by doing Argote & Epple, 1990()
.   Here, I take into consideration technologies at the 4 digit USPTO subclass level.
  An individual acquires one unit of experience in a technology each time s/he innovates using the technology by learning by doing.  If Itij represents the knowledge of an individual i in the jth technology at time t and there exist N different technologies, then individual knowledge may be expressed as a vector
[image: image1.wmf]ti

I

as follows:


[image: image2.wmf]tiN

tij

ti

ti

ti

I

I

I

I

I

,...

,..,

,

2

1

=








(1)

In all, the vector representation of knowledge gives due consideration to 3,748 4-digit classes of technologies.  I develop the vector of organizational capabilities in different technologies by summing the knowledge each individual in an organization possesses and dividing it by the number of individuals in the organization.  If there are M individuals in an organization, then organizational capabilities can be expressed as a vector as follows.
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The vector of organizational capabilities changes over time as new employees are hired, as employees leave, and as individuals accumulate knowledge by learning by doing in their activities.  When a change occurs in the composition of one of the top five technologies where an organization possesses expertise, then a core change in capabilities is considered to have occurred. 
Inbound Mobility Variables
The influence of scientist mobility on biotechnology firm innovation is operationalized using four different measures.  These are respectively the proportion of new hires in a firm, new hire experience, new hire knowledge depth, and the degree of specialization of hired scientists.  

In a first step, I determined the occurrence of mobility events.  To this end, I identified all scientists that had patented for a given firm.   For each scientist, I created an innovation history, a chronologically ordered list of patents by application date.  Next, I checked whether the firms listed on two successive patents of a scientist were the same or not.  I assume that a mobility event occurs when an employee leaves an organization A to join another firm B.  If a scientist applied for a patent in firm A in 2004 and applied for another patent in firm B in 2008,  then by interpolation hiring would be estimated to take place in 2006 Rosenkopf & Almeida, 2003()
.  

Proportion of new hires.  The proportion of new hires in a firm is measured as the ratio of the number of scientists joining a firm in the two years prior to the application date of a patent divided by the number of scientists in the firm.  

New hire experience.  This provides a measure of the experience that newly hired scientists bring to the firm.  For each hired scientist, I computed scientist experience as the number of prior patents that s/he had already worked on.  The new hire experience measure is computed as an average of the experience of inbound scientists.  



New hire knowledge depth.  This is measured as an average of the depth of knowledge new hires possess in the technologies with which a firm is actively innovating.  To this end, as discussed earlier, I assume that individuals acquire skills in different technologies they innovate in by learning by doing Argote & Epple, 1990()
 and that skills in different technologies can be expressed as an individual knowledge vector (equation 1).  

Just as scientists possess skills in different technologies, innovation projects in organizations differ in their technological requirements.  I consider the technologies used in innovation at the 4 digit level as the technology classes listed on a patent.  The technological requirements of an innovation project can then be expressed by a 1xN technology input vector Ak, whose elements Akj take the value of one when the kth innovation draws from the jth technology and zero otherwise, as follows:
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The depth of the knowledge of the ith newly hired scientist in a firm’s areas of activity can be computed as a product of the individual knowledge vector (1) and the technology input vector (3) as
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.  The measure used in empirical analysis, new hire knowledge depth, is then an average of the depth of the knowledge of each newly hired scientist.  If there are ‘n’ newly hired individuals, then the depth of individual knowledge is measured as follows
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New hire specialization.  New hires possess specialized knowledge when their knowledge is concentrated in a few technologies.  Using the individuals knowledge vector (1), I computed knowledge specialization of the ith newly hired scientist as a Herfindahl type measure as the sum of the square of the knowledge in each technology possessed by a hired scientist divided by the sum of knowledge in all technologies squared:
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(4)
The average knowledge specialization across newly hired scientists is taken as the measure of new hire specialization in empirical analysis.  It may be seen that new hire knowledge specialization is greater when the knowledge of new hires is present in a few technologies and that it lower when the knowledge of new hires is evenly dispersed across many technologies.  
Control variables

Following Stuart and Sorensen 2000()
, and consistent with ecological theories Hannan & Freeman, 1984()
, organizational inertia and resistance to change increase with organizational age and size.   To control for these effects, two time varying firm level controls, firm size and firm age are included in regressions.  Firm size is measured in terms of the number of unique scientists that appear on a given firms’ patents in the five years preceding the application of a focal patent.  Firm age is measured as the time elapsed in years since a firm first successfully applied for a patent.   

Firms accumulate experience through the repeated innovation over time by learning by doing Argote & Epple, 1990()
.  Since this accumulated experience is a source of rigidity and resistance to change, I control for firm experience.  Following studies of learning by doing, firm experience is considered to be a count of the number of patents a firm has developed prior to the application date of the focal patent under consideration.
To control for the impact of competition on innovation, following Barnett and Carroll  1987()
, I included a measure of the density of firms in the biotechnology industry.  When more firms are present in an industry, density is high, and competition for resources becomes more intense.  Accordingly, density is a time varying construct measured as a count of the number of distinct biotechnology firms that actively patented in the three years prior to the application date of a patent.

Two patent level controls used in regressions include the technological contribution of a patent and the complexity of a patent.  Each patent lists in a section titled “claims” the contributions that the patent makes to the state of art in knowledge.  A count of the number of claims is used as a measure of the extent of technological contribution of a patent.  

Each patent provides a list of the technological subclasses in which it makes contributions to the state of art in knowledge.  Since patents with a greater number of subclasses listed on them make a contribution in many different areas of activity, they are considered to be more complex.  To control for this effect, the construct technological subclasses is a count of the number of subclasses listed on a patent.  
Major change.  In order to validate the proposition that incremental changes result in radical changes in organizational capabilities, it is essential to control for changes that are non-incremental in nature.  Mobility may lead to major organizational disruption if the proportion of new hires is high.  I control for this effect through a dummy variable, major change, which takes the value of one when the proportion of new hires in a firm is high (that is, more than 10 percent of new hires in a firm).
TESTING FOR THE INFLUENCE OF INBOUND MOBILITY
A straightforward evaluation of the effect of mobility constructs on innovation impact suffers from simultaneous-equation bias Greene, 2003()
 as the impact of an innovation is influenced by the extent to which a firm engages in technological experimentation and the extent to which innovation is path dependent, and all three of these may potentially be affected by mobility.  Given this, the first two steps in the empirical analysis consist of tests to determine whether the structural model is correctly specified and whether a mediation model for mobility is appropriate.  
Simultaneity. The model of change (figure 3) was estimated using simultaneous equations modeling (SEM) in order to account for simultaneity in the model specification (Zellner & Theil, 1962).   While in ordinary least squares (OLS) each single-equation models a dependent variable (y) as a function of a set of independent variables (x), in SEM the other independent variables (y’) are also among the independent variables in each equation.  Thus, the y variables in the system are jointly (or simultaneously) determined by the equations in the system, and ignoring this effect in OLS results in simultaneity bias.  In 3 stage least square SEM regressions, in order to identify the model, I used two lagged variables, the average number of subclasses listed on all firm patents applied for in the year prior to the application date of a focal patent, and the average number of (backward) citations made by all firm patents in the prior year to patents of other firms.  There is no substantive theoretical argument linking these two variables to the forward citations received by a patent, the dependent variable in the second stage of the model.  However, the likelihood of new technological combinations increases when a firm on the lists more subclasses on its patents.  Similarly, if a firm builds more upon the prior knowledge created by other firms, it is less likely to build upon the knowledge developed in-house.  It is worth noting that these two variables vary over time and will have unique values for each focal patent under consideration in analysis.  In order to investigate whether the choice of SEM and the assumption of endogeneity was appropriate, I used the Hausman test 1978()
 to compare a SEM specification to an OLS specification for innovation impact.  This test was significant (p<0.01), validating the choice of the SEM model. 

Mediated effect of mobility.  Standard tests of mediation (Baron & Kenny, 1986) involve first investigating whether a single  independent variable (mobility variable) has a direct effect on a dependent variable (innovation impact) and an indirect effect through a (single) mediating variable (technological combination, path dependence) that is related to the dependent variable.  These tests are not appropriate for the current model setup which involves four mobility variables and two mediating variables.  An alternative test for mediation is to evaluate whether the joint introduction of mobility variables for the dependent variable and the mediating variables statistically improves model fit.  The Akaike Information Criterion (AIC) (Burnham & Anderson, 2004; Greene, 2003) is a test for model selection which provides a comparative measure of the goodness of fit of a model when a set of parameters is included versus when they are excluded.  It is expressed formally as
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, where k is the number of variables in a model, n is the number of observations, and RSS is the residual sum of squares.  The lower the AIC value of a model, the better is the model fit.  
In a first step, I first introduced mobility variables in both stages (figure 3) and evaluated whether their inclusion in the second stage for innovation impact, the direct effect, significantly improved the fit of the model.  The AIC for the model with both a mediated and a direct effect of inbound mobility in regressions for innovation impact is 48,327, and for the mediated only effect is 28,633 respectively.  The lower AIC value in regressions with a mediated only model indicates that mobility has no direct on innovation impact as this does not improve model fit.  
Second, I evaluated whether it is appropriate to include mobility variables in the first stage regressions for technological combination and path dependence.  The AIC with and without mobility in the first stage are -67,285 and -67,164 for technological combination, and -68,796 and -68,698 for path dependence.   Since the AIC values are lower when mobility constructs are present for both the mediating variables, they need to be included in the first stage regressions.   Thus, support is found for the use of a fully mediated model rather than for a partially mediated relationship between mobility variables and innovation impact. 
Fixed effects.  The 3SLS models control for unobservable heterogeneity and this in part accounts for unobservable firm level effects.  To make the control of unobservable firm heterogeneity more stringent, I introduced lagged forms of the three dependent/endogenous variables.  If a focal patent was applied for in year Y, then these lagged variables respectively measure the average level of innovation impact, path dependence, and technological combination across all firm patents that were applied for in the year (Y-2) before the application date of the focal patent.  In robustness checks, I did a number of additional tests to check whether the empirical results are robust to different model specifications, including seemingly unrelated regressions with and without fixed effects which omit the assumption of simultaneity but do control for correlation in the error term across observations, OLS regressions with fixed effects
.  The results remain broadly consistent in these specifications.       
Prior research on change uses dummy variables to control for environmental shocks in model specifications.  For instance, in their study of punctuated change in a set of 25 microcomputer firms, Romanelli and Tushman 1994: 1155()
 coded major changes in the environment using dummy variables for the years 1971, 1976, and 1980.  Consistent with this research, I included year dummies for each of the 38 years comprising the dataset to take into consideration exogenous environmental shocks and other unobserved time based effects on change in organizations.   Second, to control for unobservable effects associated with technology classes, I introduced 14 technology class dummies corresponding to the category of drugs and medical patenting and biotechnology Hall, Jaffe, & Trajtenberg, 2001: 41()
.  

RESULTS

The claim of this paper is that incremental change in the form of the continuous inflow of new organizational members may help organizations over time to achieve a better fit with the environment and to decrease the likelihood of obsolescence.  To investigate this proposition, I first present a baseline model without mobility to illustrate the working of the structural model, and then investigate the effect of inbound mobility on resistance to technological change and innovation impact.  In a final step, I use the Cox Proportional hazard model to test whether mobility leads to a change in core organizational knowledge and capabilities.
The baseline model  
Table 2 presents results of regressions for the baseline model without mobility.  Consistent with the argument that capabilities and routines may lead to inertia and to resistance to change, firm experience results in less technological combination (p<0.001, model 1) and to more path dependence (p<0.001, model 2).  Second, path dependence increases with firm age (p<0.001), even though this occurs at a decreasing rate, an indication that firms resist change increasingly as they age.  Firm age is negatively related to technological combination but this effect is not significant, and the square of firm age leads to a very small increase in technological combination (p<0.001).  This is likely to occur as firm experience leads to rigidity Leonard-Barton, 1992()
 and thus captures a part of the effect of the time trend to obsolescence.  Finally, firm age has an inverted U relationship with innovation impact (p<0.001).  The impact a firm makes on its technological community increases with age on the average to an age of about 13 years, following which innovation impact decreases with age.  Firms achieve increasingly reliable and accountable operations in their early years, and show signs of decreasing innovation impact and obsolescence as they age.
In prior sections of the paper, I argued that organizations that are resistant to change will have a lower fit with the environment and are more liable to become technologically obsolete.  The more a firm resists change, the less it will engage in new technological combinations and the more it will be path dependence.   Consistent with this, resistance to change results in lower innovation impact as it may be observed in model (3) of table (2) that technological combination leads to more innovation impact (p<0.001) and that path dependence leads to less innovation impact (p<0.001).  This relationship between resistance to technological change and innovation impact remains robust when inbound mobility variables are introduced in subsequent model specifications.  
Inbound mobility and resistance to change

Technological combination.  Models (4) and (5) of table (3) investigate the impact of mobility variables on the level of organizational resistance to technological change.  If the marginal effect of mobility is an increase in technological combination (H1a) and a decrease in path dependence (H1b), then hypothesis 1 will be validated.  Model (4) presents results of regressions for technological combination in the structural model.  Consistent with the argument that greater knowledge depth leads to rigidity Argyris & Schon, 1978(; Katila & Ahuja, 2002)
, it may be observed that when new hires have deep knowledge in a firms areas of expertise, technological combination decreases (p<0.001).  In counterpart, when new hires possess more specialized technological skills, they are more effective to recombine these skills with other technologies (p<0.001).  This occurs as new hires with specialist knowledge are in a better position to facilitate usage of the technology as compared to generalists who possess expertise across a broader set of technologies.  Further, when new hires possess highly diversified knowledge, this results in “dynamically increasing knowledge integration costs and decreasing reliability” Katila & Ahuja, 2002: 1185()
.  
Path dependence.  Regressions for path dependence are presented in table (3), model (5).  It may be observed that a disruption of routines and coordination following a greater proportion of new hires in organizations results in less path dependence (p<0.001).  Second, when new hires possess deep knowledge in domains of firm activity, path dependence increases (p<0.001) as greater expertise in firm areas of activities leads to rigidity Leonard-Barton, 1992()
.  Both hire specialization and new hire experience have no significant effect on path dependence.    

In table 4, I list out the marginal effects of mobility at the mean and at one standard deviation above the mean for regressions presented in table 3.  At the mean, mobility results in a 24 percent increase in technological combination (hypothesis 1a) and in a 3.5 percent decrease in path dependence (hypothesis 1b), validating the claim that inbound mobility results in less resistance to technological change in organizations.  The effect at one standard deviation above the mean is even more pronounced: mobility results in a 38.7 percent increase in technological combination and in a 7.1 percent decrease in path dependence.  These results are observed even though major hiring events are controlled for, and though new hire knowledge depth leads to more resistance to change.    

Innovation Impact.  The impact of a patent on other firms is a measure of its value Trajtenberg, 1990()
, of the impact a firm makes on its technological community,  and of the fit of a firm with the environment Podolny & Stuart, 1995()
.  Model (6) of table (3) provides regression results of the second stage of the structural model for innovation impact.  Consistent with the baseline model (table 2), the results indicate that technological combination leads to more innovation impact (p<0.001) and path dependence to less innovation impact (p<0.001).  Since technological combination and path dependence mediate the effect of mobility on innovation impact, the results in table 3 provide evidence that by lowering resistance to technological change, mobility leads to more innovation impact.  Table 4 quantifies the marginal effect of mobility on innovation impact.  Since mobility results in a significant increase in technological combination (+24 percent at the mean), and since technological combination leads to more innovation impact, mobility leads to more innovation impact, providing support for hypothesis 2a.  In a similar vein, since mobility lowers path dependence (-3.5 percent at the mean), mobility results in an increase in innovation impact, providing support for hypothesis 2b.  The net result is that by reducing resistance to technological change, the marginal impact of inbound mobility is to increase innovation impact by 4.1 percent at the mean, and by 8.6 percent at one standard deviation above the mean.   

Mobility and firm age
According to hypothesis 3, mobility lowers resistance to technological change more in older firms that are particularly liable to be highly resistant to technological change and more susceptible to technological obsolescence.  In a first step, I checked whether older firms are indeed more resistance to technological change by dividing the sample of observations into two groups – of firms less than or equal to eleven years of age at the time of the application date of a patent, and of firms more than eleven years of age.  Firms may be present in both groups, depending on their age at the time of patent application.  For the young subsample of firms, the average values of technological combination and path dependence are 0.149 and 0.122 respectively, and the corresponding values for older firms are 0.139 and 0.159.  T-tests of differences of means indicate that these average values are significantly different (p<0.001).  Thus, older firms are more resistant to technological change as their innovation activities are characterized by less technological combination and more path dependence.  
---------------------------------------------

INSERT TABLE 4 ABOUT HERE

---------------------------------------------

According to hypothesis (3), inbound mobility will increase the impact of innovations created by older firms more compared to younger firms and less inert firms.  I investigated this effect through the interaction of the proportion of new hires in a firm with the variable for firm age (and firm age squared).  Hypothesis (3) would indicate that mobility would lead to more technological combination and less path dependence in older firms.   The results of regressions of this interaction effect on resistance to change are presented in table (5).  In model (7), it may be observed that mobility has a U-shaped effect on technological combination.  For a given level of mobility, technological combination first decreases with firm age (p<0.001) as firm age increases for firms less than or equal to fourteen years of age, and then increases with further increases in firm age (p<0.001).  Thus, mobility leads to greater technological combination in older firms, providing support for hypothesis (3a).  In a similar vein, it may be observed in model (8) that for a given level of mobility, path dependence decreases with firm age (p<0.001) providing support for hypothesis (3b).
---------------------------------------------

INSERT TABLE 5 ABOUT HERE

---------------------------------------------

The marginal effect of mobility, including the effect of the interaction of mobility with firm age, is to increase the extent of technological combination by 14.1 percent at the mean and by 25.4 percent at one standard deviation above the mean.  Similarly, mobility results in a decrease in path dependence by 7.5 percent at the mean and 16.1 percent at one standard deviation above the mean.   By increasing technological combination and decreasing path dependence, mobility results in an increase in innovation impact of 4.2 at the mean and 8.6 percent at one standard deviation above the mean, indicating that the prior results (table 3) are robust. 
Changes to core capabilities and knowledge

The biotechnology dataset used in this study permits a decomposition of radical changes in core capabilities of an organization to the microscopic level of the inbound individual.   I do this in two steps.  First, in table 6, I illustrate how major changes occur to organizational capabilities over time.  In this table, I list the mean expertise per employee in the core organizational technologies for Genentech, a leading biotechnology organization, at intervals of five years.  I assume that a core organizational technology is a part of the select group of top five technological domains in which each organization possesses expertise at a given point of time.  It is of note that the table contains information for more than five technologies as technologies are added to and deleted from the technological core over time.  The total number of technologies used and scientists present in the organizations respectively are listed at the bottom of the table.  If organizations resist change as inertia theory would predict, then technological capabilities present in the early years following founding would become imprinted and new technologies would not become a part of the core over time.   

---------------------------------------------

INSERT TABLE 6 ABOUT HERE

---------------------------------------------

While imprinting of technologies does occur, its effect is by no means pervasive. The data presented in table 6 indicate that changes to the technological core occur continually throughout the period of firm existence.  In essence, technologies that are core to an organization may gradually become non-core, and other non-core technologies gradually become a part of the core.  The shaded boxes in table 6 depict technologies core to an organization in a given year.  It may be observed that only a minority of technologies core to Genentech in 1983 remain a part of the technological core in 2005 and that imprinting is partial.   While these results suggest that core changes occur continually in firms, they do not make a link between these core changes and mobility.
In a second step, I use Cox proportional hazard models to test for hypothesis 4 that inbound mobility will result in changes to an organizations technological core, that is, a change in the composition of the top five technologies where an organization possesses expertise (as in table 6).  In the dataset, there are 6,529 change events documented to the technological core of the set of biotechnology organizations.  Table 7 presents the results of Cox proportional hazard estimates.  Consistent with the notion of organizational obsolescence with age, it may be observed that as firms age, they become less likely to change their core technological capabilities (p<0.001, model 10).  

The mobility variables are introduced in model 11.  As in the case of prior regressions for technological combination and for path dependence, the mobility variables differ in their effect on the hazard of core technology change.  For one, as the proportion of new hires increases, the hazard of core technology change increases (p<0.001, model 11).  Second, model 12 indicates that new hire knowledge depth results in an increase in core technology change (p<0.01).   Hire knowledge specialization has no significant effect at the 5 percent level of significance.  Model 12 introduces the interaction of the proportion of new hires with firm age, and it is found that mobility leads to a greater increase in technologies core to organizations in the case of older firms as compared to younger firms, consistent with hypotheses 3a and 3b.  Interestingly, a control for major change resulting from large scale hiring is insignificant in all models in table 7, negating the proposition that major and abrupt changes in organizations lead to a radical transformation of their technological core.  
Marginal effects. Table 8 lists out the marginal effect of inbound mobility on core technological change at the mean and at one standard deviation above the mean, using coefficients obtained from regressions of model 12 in table 7.  All mobility variables lead to increases in the likelihood of core technological change except for hire knowledge depth, which leads to a decrease in the likelihood of core technological change.  At the mean, mobility results in a 32.1 percent increase in the likelihood of core technological change, and at one standard deviation above the mean, this increases to 82.8 percent, validating hypothesis 4 which states that mobility results in a change to a firm’s technological core.  
DISCUSSION AND CONCLUSIONS
The contribution of this paper is to empirically validate the claim that accumulated and continuous incremental change can result in radical changes to an organization’s core technological knowledge and capabilities, and help to avert obsolescence.  Even though the set of existing practices and routines in an organization may result in inertia, inbound mobility, I show, reduces resistance to change and helps an organization to reorient its capabilities to avert obsolescence.  Radical change and departures from existing practices may certainly occur in organizations, but this raises the likelihood of mortality and resets an organizations ecological clock Amburgey et al., 1993()
.   Given this, radical change in organizations may also take place in a less disruptive manner - through the accumulation of small incremental changes.  
A number of studies on radical change in organizations exclude the possibility that radical change can occur through small incremental change Gersick, 1991(; Romanelli & Tushman, 1994)
.  Given this, the view developed in this paper is complementary, not substitutive, to punctuated equilibrium theories (Tushman & Anderson, 1986).   Because research tends to focus on the events surrounding disruptive change, observations available to most researchers are neither sufficiently historical, nor sufficiently micro to make an association between the accumulation of many small changes and radical changes in organizational capabilities.  As a result, a number of radical changes to organizations and to industries may be observable only as punctuated events.  A number of these punctuations, however, may originate from the accumulation of incremental changes within an organization.  Inbound mobility of individuals in organizations is one micro level change event that may lead to such radical transformation to an organizations core technologies and capabilities.  
This research indicates that inbound mobility lowers resistance to technological change and facilitates radical shifts in technological capabilities over time.  In comparison, existing research indicates that the deep structure Gersick, 1991()
 of organizations and inertia, organizational routines, capabilities,  and the organizational core March, 1991()
 are all sources of rigidity to change that make incremental change conform to existing practices rather than result in major change.   For instance, it is commonly accepted that incremental change terminates in a competency trap, and that hiring will lead to conformity rather than to change.  The characteristics of new hires are key determinants of whether mobility will result in conformity or change.  While at the mean, mobility reduces resistance to change, new hires that have deep knowledge in existing areas of organizational activity will lead to greater resistance to change and to conformity as technological combination decreases (table 3 model 4) and path dependence increases (table 3 model 5), and the likelihood of major change to the technological core decreases table 6, models 11-12).   
Instead of conformity, the accumulated effect of incremental change at the mean is to disrupt rigidity and result in less resistance to change.  One way to understand this is to think of accumulated incremental change as a radical change to organizations occurring gradually.  Since change is gradual, it need not have the disruptive consequences of changes to core organizational attributes 
 ADDIN EN.CITE 
(Hannan & Freeman, 1977, 1984)
, nor need it result in a resetting of an organization’s ecological clock Amburgey et al., 1993()
.  Yet the accumulated effect remains the same, radical organizational transformation in a number of incremental steps.  In this vein, this research shows that incremental changes following inbound mobility of scientists results in an erosion of firm resistance to technological change.  For instance, the results presented in table 3 indicate that the mean effect of inbound mobility is increase technological combination by 24 percent and to decrease path dependence by 3.5 percent – both indicators of resistance to technological change.  As a result, organizations change, adapt their key technological areas of activities to environmental demands, and make a greater mean impact (+4.1 percent) on their technological community.   

Organizations are more likely to become rigid and inert to change as they age, and our results indicate that mobility is effective in lowering the propensity of older organizations to become technologically obsolete.  While inbound mobility leads to greater innovation impact at the mean, analysis in this paper shows that it is particularly effective in lowering resistance to technological change and increasing the impact of innovations for older organizations that are more resistant to change.   Using coefficients obtained from regressions of the structural model presented in table 4, I plot in figure 4 the relationship between firm age and innovation impact for three different levels of mobility.  The plot has a non-zero positive intercept with the y-axis as this is the effect at the mean of the other mobility constructs: new hire experience, knowledge depth and knowledge specialization.  It may be observed in the plot that as firm’s age, for a given proportion of new hires, that innovation impact increases substantially.  Thus, for an inflow of 10 percent new hires occurring continually over time, innovation impact increases by only 2.5 percent for firms aged five years.  For older and more inert firms aged 25 years, on the other hand, innovation impact increases by about 20 percent.  
Consistent with the notion that managers use recruitment as a tool to avert obsolescence, the results indicate that mobility increases the likelihood of a change to an organizations core technological capabilities more in older firms.  Figure 5 plots the marginal effect of the interaction of the proportion of new hires in an organization with firm age using coefficient estimates from table 7 model 12, for three different levels of mobility.    The relationship between mobility, firm age and the likelihood of core change is similar to that observed with innovation impact.  Even at modest levels of mobility (proportion of new hires <= 0.1), the likelihood of making a change in core technological capabilities increases from 8.5 percent for firms aged 5 years to 51 percent  for firms aged 25 years.  It is of note that these results do not negate the impact of greater levels of change (20 or 30 percent mobility) on the likelihood of core technology change, though greater levels of mobility might also result in lower organizational survival chances.
Finally, this paper shows that imprinting does not have a definitive effect on organizations as technologies core to an organization change over time.  For instance, only a minority (<40%) of the technologies core to Genentech at the time of founding (table 5) remain core twenty five to thirty years later in 2005.  In fact, table 5 indicates that technologies enter and exit from the technological core of these firms continually over time.  Using this as an indicator of radical change to an organization’s technological capabilities, I found that inbound mobility leads to substantial increases in the hazard of core technological change in organizations.  At the mean, hazard rate models indicate that mobility leads to a 32 percent increase in the likelihood of core technological change, and that at one standard deviation above the mean this increases to 83 percent (table 7).  In sum, radical change to the technological core and to core organizational capabilities occurs in incremental steps rather through radical events.

       Notwithstanding the effect of incremental changes to produce radical change in organizations over time, further research is required to study the relative effect of incremental changes and radical events for core organizational change.  For one, hiring, whatever its level of magnitude, reduces inertia in organizations and this effect helps to avert obsolescence.  Given this, while the organizations do potentially acquire more current capabilities following large inflows of employees, large changes to the technological core in the short run may lead to significant coordination problems and increase mortality rates 
 ADDIN EN.CITE 
(Hannan & Freeman, 1977, 1984)
.  This is not an issue, however, when inflows are modest and less disruptive.   Consequently, this research needs to be complemented by additional work investigating the relationship between the magnitude of employee inflows and survival chances and mortality.  Some such work already exists but needs to be extended to take into consideration very large inflows of individuals.  For instance, Wezel, Cattani and Pennings (2006) show, counter intuitively, that recruitment leads to a transfer of routines from one organization to another and to lower mortality in the hiring organization.  They find that the mortality hazard drops to more when groups of individuals move together from one organization to another.  
Further, it is essential to point out two limitations of using USPTO patent data to study the effect of scientist mobility on organizations.  A mobility event is identified to have occurred when a scientist that had patented for a company X, say Chiron Corporation, subsequently patents in another company Y, say Genentech Inc..  Given this, if a scientist moves to another firm and patents only in the hiring firm, we cannot document that mobility has occurred.  A second limitation is that if the mobile scientist does not patent in the hiring firm, then once again a mobility event will not be documented.  As Rosenkopf and Almeida  2003: 758()
 note, these limitations make tests for mobility more conservative.  
In making the argument that organizations avert obsolescence by continually making small changes, the results of this study might provide comfort to some individuals, and to some theories of organization.  The notion of radical change in organizations by small steps provides a foundation to the evolvability of organizations in which organizations negotiate a trajectory to avoid obsolescence on the one hand, and to avoid the deleterious consequences of change on the other.
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FIGURES AND TABLES
Figure 1.  Technologies become less influential over time
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Technological influence is defined as the ratio of the average number of citations received by patents belonging to a technology (aggregated at the 4 digit USPTO subclass level) and applied for in a given calendar year, to the average number of citations received by all patents in biotechnology applied for in the same calendar year.  

	Figure 2.  Firms become resistant to technological change as they age 

	a) Technological combination
Firms make fewer new combinations of technologies as the age
	b) Path dependence

Firms engage in more self-citation as they age
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	Using data from over 600 biotechnology firms over a 30 year time period, panel (a) shows that firms engage less technological combination as they age.  Similarly, panel (b) shows that innovation builds more upon prior firm innovation as they age, measured here by the extent of self-citation.  


Figure 3.  Inbound mobility leads to greater innovation impact

Figure 4. Innovation impact and firm age.  Inbound mobility is more effective in improving the impact of innovations in older firms
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Figure 5.  Core technological change.  Inbound mobility increases the likelihood of core technological change more in older firms
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	Table 1. Correlations and Descriptive Statistics

	 
	Mean
	s.d.
	1
	2
	3
	4
	5
	6
	7
	8

	1
	Innovation impact
	0.84
	1.87
	
	
	
	
	
	
	
	

	2
	Technological combination
	0.15
	0.25
	0.07
	
	
	
	
	
	
	

	3
	Path dependence
	0.13
	0.24
	-0.02
	-0.04
	
	
	
	
	
	

	4
	Firm experience
	157.5
	229.8
	-0.10
	-0.15
	0.08
	
	
	
	
	

	5
	Firm age
	10.51
	7.06
	-0.08
	-0.04
	0.14
	0.58
	
	
	
	

	6
	Firm size
	98.0
	120.6
	-0.07
	-0.11
	0.03
	0.76
	0.54
	
	
	

	7
	Density
	399.8
	125.7
	-0.04
	-0.21
	-0.01
	0.27
	0.17
	0.26
	
	

	8
	Team size
	3.37
	2.30
	0.02
	-0.04
	-0.05
	0.12
	0.06
	0.12
	0.16
	

	9
	No. sub classes
	5.93
	4.64
	0.04
	0.07
	0.02
	-0.01
	-0.04
	-0.02
	-0.02
	0.03

	10
	No. of citations made
	19.69
	34.45
	-0.00
	0.01
	-0.06
	-0.05
	-0.05
	-0.03
	0.17
	0.08

	11
	No. of claims
	18.45
	16.27
	0.09
	0.01
	-0.02
	-0.08
	-0.09
	-0.06
	0.10
	0.03

	12
	Tech. combination (lagged)
	0.47
	1.42
	0.04
	0.06
	0.05
	-0.05
	0.04
	-0.03
	-0.15
	-0.03

	13
	Path dependence (lagged)
	0.10
	0.13
	-0.05
	-0.05
	0.27
	0.30
	0.40
	0.17
	0.04
	0.01

	14
	Innovation impact (lagged)
	0.84
	1.22
	0.21
	0.02
	0.04
	-0.09
	-0.05
	-0.03
	0.03
	-0.01

	
	Mobility constructs
	
	
	
	
	
	
	
	
	
	

	15
	Prop. of new hires 
	0.09
	0.12
	0.03
	0.00
	-0.12
	-0.15
	-0.21
	-0.02
	0.04
	-0.02

	16
	Hire experience
	8.48
	9.11
	-0.03
	-0.07
	0.01
	0.36
	0.22
	0.32
	0.29
	0.12

	17
	Hire knowledge depth
	12.57
	31.14
	0.01
	-0.06
	0.04
	0.13
	0.03
	0.09
	0.14
	0.09

	18
	Hire knowledge specialization
	0.01
	0.04
	0.03
	0.03
	-0.06
	-0.13
	-0.16
	-0.14
	-0.01
	0.08

	 
	
	

	Table 1. Descriptive Statistics cont.
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	 
	 
	9
	10
	11
	12
	13
	14
	15
	16
	17
	

	10
	No. of citations made
	0.01
	
	
	
	
	
	
	
	
	

	11
	No. of claims
	0.10
	0.17
	
	
	
	
	
	
	
	

	12
	Tech. combination (lagged)
	0.05
	-0.01
	-0.01
	
	
	
	
	
	
	

	13
	Path dependence (lagged)
	0.01
	-0.03
	-0.02
	0.05
	
	
	
	
	
	

	14
	Innovation impact (lagged)
	0.00
	0.22
	0.07
	0.17
	0.03
	
	
	
	
	

	
	Mobility constructs
	
	
	
	
	
	
	
	
	
	

	15
	Prop. of new hires 
	0.01
	0.03
	0.03
	-0.04
	-0.20
	0.01
	
	
	
	

	16
	Hire experience
	0.00
	0.05
	0.00
	-0.05
	0.13
	0.04
	0.16
	
	
	

	17
	Hire knowledge depth
	0.36
	0.03
	0.03
	-0.02
	0.11
	0.00
	0.08
	0.51
	
	

	18
	Hire knowledge specialization
	0.00
	0.02
	0.03
	-0.03
	-0.09
	-0.02
	0.30
	0.07
	0.12
	

	N=23252; Limiting values of correlations c:  p<0.1, |c|>0.011; p<0.05, |c|>0.0147; p<0.01, |c|>0.0169; p<0.001, |c|> 0.0221


	Table 2.  Baseline 3 stage regressions of the structural model 

	
	(1)
	(2)
	(3)

	 
	Technological combination
	Path dependence
	Innovation impact

	Stage 1 variables
	
	
	

	Tech. combination
	
	
	6.545***

	
	
	
	(1.120)

	Path dependence
	
	
	-7.328***

	
	
	
	(1.300)

	Firm level controls
	
	
	

	Firm experience
	-0.0001***
	0.00005***
	0.0007***

	
	(0.000)
	(0.000)
	(0.000)

	Firm age
	-0.0005
	0.0113***
	0.0634***

	
	(0.001)
	(0.001)
	(0.018)

	(Firm age)2
	0.0001***
	-0.0003***
	-0.0024***

	
	(0.000)
	(0.000)
	(0.001)

	Firm size
	-0.0003***
	-0.0002***
	0.0002

	
	(0.000)
	(0.000)
	(0.001)

	(Firm size)2
	0.000001***
	0.0000
	-0.000003**

	
	(0.000)
	(0.000)
	(0.000)

	Industry level controls
	
	
	

	Density
	-0.0004***
	-0.0001***
	0.0007

	
	(0.000)
	(0.000)
	(0.001)

	Patent level controls
	
	
	

	Team size
	-0.0000
	-0.0049***
	-0.0149

	
	(0.001)
	(0.001)
	(0.011)

	No. sub classes
	0.0034***
	0.0012***
	

	
	(0.000)
	(0.000)
	

	No. of citations made
	0.0002***
	-0.0004***
	

	
	(0.000)
	(0.000)
	

	No. of claims
	0.0001
	1.18e-06
	0.0060***

	
	(0.000)
	(0.000)
	(0.001)

	Lagged controls
	
	
	

	Tech. combination 
	0.0029**
	0.0028**
	0.0116

	
	(0.001)
	(0.001)
	(0.015)

	Path dependence
	-0.0471***
	0.4130***
	3.0600***

	
	(0.014)
	(0.013)
	(0.570)

	Citations
	0.0011
	0.0066***
	0.2930***

	
	(0.001)
	(0.001)
	(0.018)

	Constant
	0.246***
	0.0360
	-0.8300

	
	(0.056)
	(0.054)
	(0.745)

	N= 23247 and regressions include 591 firms.  All model specifications include year and technology class dummies

	*** p<0.001; ** p<0.01; * p<0.05


	Table 3.  Inbound mobility results in greater innovation impact

	 
	(4)
	(5)
	(6)

	
	Tech. combination
	Path dependence
	Innovation impact

	Mobility variables
	
	
	

	Proportion of hires
	0.0086
	-0.0518***
	

	
	(0.019)
	(0.018)
	

	Hire experience
	0.0017***
	-0.0002
	

	
	(0.000)
	(0.000)
	

	Hire knowledge depth
	-0.0006***
	0.0002***
	

	
	(0.000)
	(0.000)
	

	Hire specialization
	0.1450***
	-0.0588
	

	
	(0.042)
	(0.040)
	

	Stage 1 variables
	
	
	

	Tech. combination
	
	
	2.036***

	
	
	
	(0.523)

	Path dependence
	
	
	-2.451***

	
	
	
	(0.593)

	Major change control
	
	
	

	Major change
	-0.0149***
	-0.0198***
	

	
	(0.005)
	(0.005)
	

	Firm level controls
	
	
	

	Firm experience
	-0.0001***
	0.0000
	-0.0001

	
	(0.000)
	(0.000)
	(0.000)

	Firm age
	-0.0003
	0.0101***
	0.0038

	
	(0.001)
	(0.001)
	(0.010)

	(Firm age)2
	0.0001***
	-0.0003***
	-0.0002

	
	(0.000)
	(0.000)
	(0.000)

	Firm size
	-0.0003***
	-0.0001**
	-0.0003

	
	(0.000)
	(0.000)
	(0.000)

	(Firm size)2
	0.000001***
	-0.0000
	0.0000

	
	(0.000)
	(0.000)
	(0.000)

	Industry level controls
	
	
	

	Density
	-0.0004***
	-0.0001***
	-0.0005

	
	(0.000)
	(0.000)
	(0.000)

	Patent level controls
	
	
	

	Team size
	-0.0002
	-0.0049***
	0.0117*

	
	(0.001)
	(0.001)
	(0.006)

	No. sub classes
	0.0051***
	0.0005
	

	
	(0.000)
	(0.000)
	

	No. of citations made
	0.0003***
	-0.0005***
	

	
	(0.000)
	(0.000)
	

	No. of claims
	0.0001
	0.0000
	0.0077***

	
	(0.000)
	(0.000)
	(0.001)

	Lagged controls
	
	
	

	Lagged tech. exp.
	0.0028**
	0.0028**
	0.0113

	
	(0.001)
	(0.001)
	(0.010)

	Lagged path dependence
	-0.0423***
	0.3980***
	0.8290***

	
	(0.014)
	(0.013)
	(0.269)

	Lagged citations
	0.0004
	0.0073***
	0.2830***

	
	(0.001)
	(0.001)
	(0.011)

	Constant
	0.2460***
	0.0543
	0.2150

	
	(0.056)
	(0.054)
	(0.479)

	N= 23247 and regressions include 591 firms.  All model specifications include year and technology class dummies

	*** p<0.001; ** p<0.01; * p<0.05


	Table 4.  The marginal effect of inbound mobility on resistance to change and innovation impact

	
	Tech. combination
	Path dependence
	Innovation impact

	At the mean
	+24%
	-3.5%
	+4.1%

	At mean + 1 s.d.
	+38.7%
	-7.1%
	+8.6%


	Table 5.  Resistance to change.  Inbound mobility reduces resistance to technological change more in older firms

	
	(7)
	(8)
	(9)

	
	Tech. combination
	Path dependence
	Innovation impact

	Mobility variables
	
	
	

	Proportion of hires
	0.0315
	-0.0056
	

	
	(0.0243)
	(0.0235)
	

	Hire experience
	0.0017***
	-0.0002
	

	
	(0.0002)
	(0.0002)
	

	Hire knowledge depth
	-0.0006***
	0.0002***
	

	
	(0.0000)
	(0.0000)
	

	Hire specialization
	0.1420***
	-0.0752*
	

	
	(0.0420)
	(0.0407)
	

	Prop. of hires * firm age
	-0.0167**
	-0.0154**
	

	
	(0.0066)
	(0.0064)
	

	Prop. of hires * (firm age)2
	0.0012***
	0.0004
	

	
	(0.0003)
	(0.0003)
	

	Stage 1 variables
	 
	 
	 

	Tech. combination
	
	
	2.066***

	
	
	
	(0.500)

	Path dependence
	
	
	-1.840***

	
	
	
	(0.561)

	Major change control
	
	
	

	Major change
	-0.0142***
	-0.0156***
	

	
	(0.0050)
	(0.0049)
	

	Firm level controls
	
	
	

	Firm experience
	-0.0001***
	0.0000
	-0.0001

	
	(0.0000)
	(0.0000)
	(0.0001)

	Firm age
	0.0001
	0.0115***
	-0.0032

	
	(0.0010)
	(0.0009)
	(0.0093)

	(Firm age)2
	0.0001**
	-0.0003***
	-0.0000

	
	(0.0000)
	(0.0000)
	(0.0003)

	Firm size
	-0.0003***
	-0.0001
	-0.0001

	
	(0.0000)
	(0.0001)
	(0.0004)

	(Firm size)2
	0.000001***
	-0.0000
	0.0000

	
	(0.0000)
	(0.0000)
	(0.0000)

	Industry level controls
	
	
	

	Density
	-0.0004***
	-0.0001***
	-0.0005

	
	(0.0000)
	(0.0000)
	(0.0003)

	Patent level controls
	
	
	

	Team size
	-0.0003
	-0.0048***
	0.0149**

	
	(0.0007)
	(0.0007)
	(0.0062)

	No. sub classes
	0.0051***
	0.0005
	

	
	(0.0004)
	(0.0004)
	

	No. of citations made
	0.0003***
	-0.0005***
	

	
	(0.0000)
	(0.0000)
	

	No. of claims
	0.0001
	0.0000
	0.0078***

	
	(0.0001)
	(0.0001)
	(0.0008)

	Lagged controls
	
	
	

	Lagged tech. exp.
	0.0028**
	0.0028**
	0.0093

	
	(0.0011)
	(0.0011)
	(0.0096)

	Lagged path dependence
	-0.0389***
	0.3920***
	0.5760**

	
	(0.0140)
	(0.0136)
	(0.2560)

	Lagged citations
	0.0004
	0.0075***
	0.2800***

	
	(0.0014)
	(0.0014)
	(0.0113)

	Constant
	0.2480***
	0.0472
	0.1890

	
	(0.0558)
	(0.0540)
	(0.4690)


	Table 6.  Core technologies used at Genentech undergo change over time

	
	Technology
	1980
	1985
	1990
	1995
	2000
	2005

	1
	378/4/
	
	0.59 
	0.81
	2.24
	3.21
	10.81

	2
	324/5/
	1.00
	1.23 
	1.27
	2.08
	2.47
	6.01

	3
	381/2/
	
	0.66 
	0.88
	1.37
	1.87
	5.04

	4
	324/15/
	1.25
	0.81 
	0.90
	1.37
	1.60
	4.39

	5
	324/11/
	
	0.14
	0.47
	1.14
	1.51
	3.96

	6
	324/14/
	0.50
	0.53
	0.69
	1.21
	1.44
	3.52

	7
	366/2/
	
	0.11
	0.51
	1.29
	1.45
	2.95

	8
	432/1/
	1.50
	0.98
	0.66
	0.54
	0.45
	0.61

	9
	432/20/
	0.50
	0.02
	
	
	
	

	No. of technologies used
	5
	52
	66
	77
	70
	61

	No. of employees
	4
	64
	130
	286
	353
	322


The technologies are at the USPTO 4 digit USPTO subclass level.  The shaded boxes represent the technologies core to the organization in the indicated year.  Technologies core to an organization change over time.  

	Table 7. Cox proportional hazard models of major changes to a firm’s capabilities.  

	 
	(10)
	(11)
	(12)

	
	Controls
	Mobility variables
	Prop. Hires * Firm Age

	Mobility variables
	
	
	

	Prop. of hires
	
	1.137***
	0.4640**

	
	
	(0.214)
	(0.225)

	Hire experience
	
	0.0144***
	0.0140***

	
	
	(0.003)
	(0.003)

	Hire knowledge depth
	
	-0.0016**
	-0.0015**

	
	
	(0.001)
	(0.001)

	Hire specialization
	
	0.4270
	0.6850**

	
	
	(0.293)
	(0.287)

	No. of hires * firm age
	
	
	0.1640***

	
	
	
	(0.029)

	Major change control
	
	
	

	Major change
	
	0.0143
	-0.0339

	
	
	(0.109)
	(0.114)

	Firm level controls
	
	
	

	Firm experience
	-0.0009
	-0.0007
	-0.0002

	
	(0.001)
	(0.001)
	(0.001)

	Firm age
	-0.1570***
	-0.1220***
	-0.1520***

	
	(0.019)
	(0.018)
	(0.018)

	(Firm age)2
	0.0039***
	0.0031***
	0.0036***

	
	(0.001)
	(0.001)
	(0.001)

	Firm size
	0.0256***
	0.0238***
	0.0231***

	
	(0.002)
	(0.002)
	(0.002)

	(Firm size)2
	-0.0001***
	-0.00004***
	-0.00004***

	
	(0.000)
	(0.000)
	(0.000)

	Industry level controls
	
	
	

	Density
	-0.0305***
	-0.0309***
	-0.0316***

	
	(0.004)
	(0.004)
	(0.004)

	Lagged controls
	
	
	

	Firm citations (Y-2)
	0.0379**
	0.0386**
	0.0351**

	
	(0.017)
	(0.016)
	(0.016)

	Firm citations (Y-3)
	0.0511***
	0.0398**
	0.0377**

	
	(0.018)
	(0.019)
	(0.019)

	Firm growth (Y-2)
	0.0211***
	0.0221***
	0.0220***

	
	(0.006)
	(0.006)
	(0.006)

	Firm growth (Y-3)
	0.0043
	0.0060
	0.0053

	
	(0.007)
	(0.007)
	(0.007)

	Log likelihood
	-33062
	-32863
	-32796

	N= 22661.  There are 6529 failures in a multiple failure per subject (firm) model.

	*** p<0.001, ** p<0.01, * p<0.05

	


	Table 8. Proportional increase in the hazard of core technology change following mobility

	
	Mean
	Mean + s.d.

	Prop. of hires
	0.044
	0.103

	Hire experience
	0.126
	0.279

	Hire knowledge depth
	-0.019
	-0.063

	Hire specialization
	0.007
	0.035

	Prop. Of hires * firm age
	0.137
	0.336

	Total effect
	0.321
	0.828


Stage 1			Stage 2





Technological combination 





Path dependence





Innovation Impact





Inbound mobility








			       	  Resistance to			    Fit


       Technological Change	         


                   	       		  	           











H1 (-)





H2 (+)





Change





Firm age





H3 (-)








� See � HYPERLINK "http://elsa.berkeley.edu/~bhhall/pat/namematch.html" ��http://elsa.berkeley.edu/~bhhall/pat/namematch.html�


� The USPTO uses a hierarchical classification system to classify technologies subclasses into groups based on their relatedness.   The first level of this classification system comprises of around 470 3-digit technology classes, and the last level of over 157,000 9-digit technology subclasses.  The former is too coarse grained and the latter to fine grained to use in the current analysis.  As a result, I collapsed all technology subclasses to the 4-digit level.  This results in about 14,500 4-digit level technology categories, of which 1,613 are used in analysis.


� These results are consistent with those presented in the paper, and are available from the author upon request.
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